Approximate multiplicative groups in nilpotent Lie groups

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximate Multiplicative Groups in Nilpotent Lie Groups

We generalize a result of Tao which describes approximate multiplicative groups in the Heisenberg group. We extend it to simply connected nilpotent Lie groups of arbitrary step.

متن کامل

Curvature in Nilpotent Lie Groups

Colloq. Algebraic Topology, 1962, pp. 104-113, Matematisk Institut, Aarhus Universitet, Denmark. 4. M. F. Atiyah, Thorn complexes, Proc. London Math. Soc. (3) 11 (1961), 291310. 5. M. F. Atiyah and J. A. Todd, On complex Stiefel manifolds, Proc. Cambridge Philos. Soc. 56 (1960), 342-353. 6. Sze-Tsen Hu, Homotopy theory, Pure and Applied Mathematics VIII, Academic Press, New York and London, 195...

متن کامل

Extremal Curves in Nilpotent Lie Groups

We classify extremal curves in free nilpotent Lie groups. The classification is obtained via an explicit integration of the adjoint equation in Pontryagin Maximum Principle. It turns out that abnormal extremals are precisely the horizontal curves contained in algebraic varieties of a specific type. We also extend the results to the nonfree case.

متن کامل

Affine Actions on Nilpotent Lie Groups

To any connected and simply connected nilpotent Lie group N , one can associate its group of affine transformations Aff(N). In this paper, we study simply transitive actions of a given nilpotent Lie group G on another nilpotent Lie group N , via such affine transformations. We succeed in translating the existence question of such a simply transitive affine action to a corresponding question on ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2010

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-10-10078-1